Branching Random Walks on Trees and Hyperbolic Spaces

Longmin Wang (Nankai University)

Joint with Matthieu Dussaule, Shuwen Lai, Vladas Sidoravicius, Kai-Nan Xiang, Wenyuan Yang

17th Workshop on Markov Processes and Related Fields BNU @ Zhuhai, November 27, 2022

Longmin Wang

BRW on Hyperbolic Spaces

wanglm@nankai.edu.cn 1/14

Branching Markov Chains

Suppose

- $(p_k)_{k\geq 0}$ is a non-degenerate probability distribution on $\{0, 1, 2, \ldots\}$,
- (Z_n) is a Markov chain on X with transition probabilities p(x, y).

A branching Markov chain, or branching random walk (BRW) is a particle system defined inductively:

- At time 0, we have one particle at $x \in X$;
- Between time *n* and *n* + 1, the process performs two steps: branching and movement.
 - Each particle produces independently descendants according to $(p_k)_{k\geq 0}$ and dies;
 - Each of these descendants moves one step independently according to the Markov chain (Z_n) on X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Phase Transition

- Let $r := \sum_{k=0}^{\infty} k p_k$ be the mean offspring of the Branching Markov chain,
- Let $R^{-1} := \limsup_{n \to \infty} [p_n(x, y)]^{1/n}$ with $p_n(x, y)$ the *n*-step transition probability of the Markov chain.

Theorem (Benjamini-Peres '94, Gantert-Müller '06)

- If $r \leq 1$, then the BRW is extinct;
- If r > R, then the BRW is recurrent on the set of non-extinction;
- If 1 < r ≤ R, then the BRW is transient, that is, it eventually leaves any finite subset of X.

Intuition: If r < R, then

$$\mathbf{E}\left[\# \text{ visits to } x \right] = \sum_{n=0}^{\infty} r^n p_n(e, x) \le \sum_{n=0}^{\infty} \left(\frac{r}{R} \right)^n < \infty.$$

Denote by \mathcal{P} the trace of the BRW. Then

- if $r \leq 1$, then \mathcal{P} is finite;
- if r > R, then $\mathcal{P} = X$;
- if $1 < r \leq R$, then \mathcal{P} is a random subset of X.

Question

Suppose $1 < r \leq R$.

1 E N 1 E N

Homogeneous Tree

Assume \mathbb{T}^m with $m \geq 3$ is the homogeneous tree with boundary

 $\partial \mathbb{T}^m = \{ \text{all semi-infinite rays from } o \}.$

For $\omega, \omega' \in \partial \mathbb{T}^m$, let $N(\omega, \omega')$ be the length of the common segment of ω and ω' . Then

$$d_{\rm e}(\omega, \omega') = {\rm e}^{-N(\omega, \omega')}$$

defines a metric on $\partial \mathbb{T}^m$.

Under d_e , the Hausdorff dimension Hdim $\partial \mathbb{T}^m = \log(m-1)$.

< 日 > < 同 > < 三 > < 三 >

Literature

Theorem (Liggett '96, Hueter-Lalley '00)

Let $\Lambda(r)$ be the limit set of a symmetric, nearest-neighbor branching random walk with mean offspring r on \mathbb{T}^m and let $h(r) = \operatorname{Hdim} \Lambda(r)$. Then

- For $1 \le r \le R$, h(r) is continuous, strictly increasing and nonrandom;
- $h(R) \leq \frac{1}{2} \operatorname{Hdim} \partial \mathbb{T}^m$; and the equality holds iff the BRW is simple.
- h(r) has critical exponent $\frac{1}{2}$ at R: there is a constant C > 0 such that

$$h(R) - h(r) \sim C (R - r)^{\frac{1}{2}}, \quad r \uparrow R.$$

- Branching Brownian motion on hyperbolic spaces: Lalley-Sellke '97, Karpelevich-Pechersky-Suhov '98
- BRW on free products of groups: Candellero-Gilch-Müller '12

Longmin Wang

6/14

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Random Walks on Hyperbolic Spaces

- Let X be a closed convex subset of the real hyperbolic space \mathbb{H}^d , and
- Γ a discrete group of isometries of \mathbb{H}^d acting geometrically on X.

Assume that

- μ is a symmetric probability measure on Γ with finite support. Here we say μ is symmetric if $\mu(g^{-1}) = \mu(g)$ for all $g \in \Gamma$.
- μ is admissible (i.e. the support of μ generates Γ as a semigroup).

The random walk (Z_n) on Γ is the Markov chain with transition probabilities $p(x, y) = \mu(x^{-1}y)$, starting at the neutral element *e*.

Fix $o \in X$. We call $(Z_n o)$ the random walk on X.

イロト 不得 トイヨト イヨト 二日

BRW on Hyperbolic Spaces

Recall that *R* is the radius of convergence for $G_r(x, y) = \sum_{n=0}^{\infty} r^n p_n(x, y)$.

Consider a BRW on X with mean offspring r and let \mathcal{P} be its trace. The limit set $\Lambda(r)$ of the BRW is the set of accumulation points of \mathcal{P} in ∂X .

Theorem (Sidoravicius-W.-Xiang '20+, Dussaule-W.-Yang '22+) For $1 < r \leq R$,

 there is κ < +∞ such that almost surely for every ξ ∈ Λ(r), as x → ξ along the geodesic [o, ξ],

$$\limsup \frac{d(x, \mathcal{P}o)}{\log d(o, x)} < \kappa.$$

Hdim
$$\Lambda(r) = \limsup_{n \to \infty} \frac{1}{n} \log \sum_{g: n \le d(o, go) \le n+1} G_r(e, g)$$

Gap at R

By the Cauchy-Schwarz inequality,

$$\sum_{n \le d(o, go) < n+1} G_r(e, g) \le \left[\sum_{n \le d(o, go) < n+1} 1\right]^{\frac{1}{2}} \left[\sum_{n \le d(o, go) < n+1} G_r(e, g)^2\right]^{\frac{1}{2}}.$$

• By Gouëzel '14,
$$\sum_{n \le d(o, go) < n+1} G_r(e, g)^2 \le C.$$

• By Coornaert '93,

$$\operatorname{Hdim} \partial X = \lim_{n \to \infty} \frac{1}{n} \log \sharp \{g \colon n \le d(o, go) < n+1\}.$$

Thus

$$\operatorname{Hdim} \Lambda(r) \leq \frac{1}{2} \operatorname{Hdim} \partial X.$$

0

R

Hdim ∂X

 $\frac{1}{2}$ Hdim ∂X

Biased Random Walks

For $\lambda > 0$, the λ -biased random walk on the homogeneous tree \mathbb{T}^{d+1} with root o is the Markov chain with transition probabilities

where x^{-} is the parent of x. Then the radius of convergence is

$$R = \begin{cases} \frac{d+\lambda}{2\sqrt{d\lambda}}, & \text{if } 0 < \lambda < d, \\ 1, & \text{if } \lambda \ge d. \end{cases}$$

We have for $0 < \lambda < d$,

$$h(r) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{d(o, x)=n} G_r(o, x) = \log \left[\frac{d + \lambda - \sqrt{(d + \lambda)^2 - 4d\lambda r^2}}{2\lambda r} \right].$$

Longmin Wang

wanglm@nankai.edu.cn

10/14

Biased BRW

Consider the λ -biased BRW on \mathbb{T}^{d+1} with mean offspring r.

• If $d^{-1} < \lambda < d$, then for $1 < r \le R$, $\operatorname{Hdim} \Lambda(r) = h(r)$. In particular,

Hdim
$$\Lambda(R) = \frac{1}{2} \left[\log d - \log \lambda \right] < \log d$$
.

- If $\lambda = d^{-1}$, then for $1 < r \le R$, $\operatorname{Hdim} \Lambda(r) = h(r)$. In particular, $\operatorname{Hdim} \Lambda(R) = \log d$, and $\operatorname{Hdim} \Lambda(r)$ is continuous for r > 0.
- If $0 < \lambda < d^{-1}$, then with $R_0 = \frac{d+\lambda}{d\lambda+1}$,

$$\operatorname{Hdim} \Lambda(r) = \begin{cases} h(r), & \text{if } 1 < r < R_0, \\ \log d, & \text{if } R_0 \le r \le R. \end{cases}$$

In particular, $\operatorname{Hdim} \Lambda(r)$ is continuous for r > 0.

Random Walks on Trees

Let T be a locally finite, infinite tree with root o. For $x \in T$, the cone C_x is the subtree rooted at x. Denote

$$C = \{\text{isomorphism classes of } C_x \colon x \in T, x \neq o\}.$$

For $x \in T \setminus \{o\}$, define $\tau(x) \in C$ to be the type of the cone C_x . For *i*, $j \in C$, we assign d(i, j) directed edges from *i* to *j*, where d(i, j) is the number of type-*j* children of *x* with $\tau(x) = i$. We say *T* has finitely many cone types, if *C* is irreducible and finite.

Consider a random walk on T with transition probabilities p(x, y). Assume

$$\tau(x) = i, \ \tau(y) = j \text{ with } y \in C_x \quad \Longrightarrow \quad p(x, \ y) = p(i, \ j),$$

where p(i, j) is a matrix on C. Then

$$p(x, x^{-}) = 1 - \sum_{j} d(i, j)p(i, j).$$

See Lyons '90, Takacs '97, Nagnibeda-Woess '02, _____

BRW on Trees

Recall that

$$h(r) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{d(o, x) = n} G_r(o, x).$$

Define

$$R_0 = \sup \left\{ r > 0 : G_r(o, x) \le 1 \quad \text{for all large } x \right\}.$$

Theorem (Lai-W. in progress)

Let $\Lambda(r)$ be the limit set of the BRW with mean offspring r on trees with finitely many cone types. Then for $1 < r \leq R_0$,

 $\operatorname{Hdim} \Lambda(r) = h(r).$

Remark If the group AUT(T, P) acting on (T, P) transitively, then $R_0 = R$.

Longmin Wang

< ロ > < 同 > < 回 > < 回 >

Problems

- **1** On trees with finitely many cone types, find $\operatorname{Hdim} \Lambda(r)$ for $R_0 < r \le R$.
- **2** On hyperbolic spaces, find conditions for Hdim $\Lambda(R) = \frac{1}{2}$ Hdim ∂X .
 - Fundamental inequality: h ≤ l v (c.f. Guivarc'h '79)
 Blachère-Haïssinsky-Mathieu '11, Gouëzel-Mathéus-Maucourant '18, Dussaule-Gekhtman '20: For random walks on (relatively) hyperbolic groups Γ, h = l v only if Γ is virtually free.

•
$$\sum_{n \le d(o, go) < n+1} G_R(e, g) \asymp \left[\sum_{n \le d(o, go) < n+1} 1 \right]^{\frac{1}{2}} \left[\sum_{n \le d(o, go) < n+1} G_R(e, g)^2 \right]^{\frac{1}{2}}.$$

Percolation, Contact processes, …

THANK YOU FOR YOUR ATTENTION!

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト