Branching Random Walks on Trees and Hyperbolic **Spaces**

Longmin Wang (Nankai University)

Joint with Matthieu Dussaule, Shuwen Lai, Vladas Sidoravicius, Kai-Nan Xiang, Wenyuan Yang

17th Workshop on Markov Processes and Related Fields BNU @ Zhuhai, November 27, 2022

 200

Branching Markov Chains

Suppose

- $(p_k)_{k\geq 0}$ is a non-degenerate probability distribution on $\{0,\,1,\,2,\,\ldots\},$
- (Z_n) is a Markov chain on X with transition probabilities $p(x, y)$.

A branching Markov chain, or branching random walk (BRW) is a particle system defined inductively:

- At time 0, we have one particle at $x \in X$;
- Between time *n* and $n + 1$, the process performs two steps: branching and movement.
	- Each particle produces independently descendants according to $(p_k)_{k\geq 0}$ and dies;
	- Each of these descendants moves one step independently according to the Markov chain (Z_n) on X .

Phase Transition

- Let $r := \sum_{k=0}^{\infty} k p_k$ be the mean offspring of the Branching Markov chain,
- Let R^{-1} := $\limsup_{n\to\infty} [p_n(x, y)]^{1/n}$ with $p_n(x, y)$ the *n*-step transition probability of the Markov chain.

Theorem (Benjamini-Peres '94, Gantert-Müller '06)

- \bullet If $r < 1$, then the BRW is extinct;
- \bullet If $r > R$, then the BRW is recurrent on the set of non-extinction;
- \bullet If $1 < r \leq R$, then the BRW is transient, that is, it eventually leaves any finite subset of X .

Intuition: If $r < R$, then

$$
\mathbf{E}\left[\sharp \text{ visits to } x\right] = \sum_{n=0}^{\infty} r^n p_n(e, x) \le \sum_{n=0}^{\infty} \left(\frac{r}{R}\right)^n < \infty.
$$

Denote by P the trace of the BRW. Then

- if $r < 1$, then P is finite;
- if $r > R$, then $P = X$;
- if $1 < r < R$, then P is a random subset of X.

Question

Suppose $1 < r \leq R$.

 \bullet Given a boundary of X, what is the Hausdorff dimension of the limit set $\Lambda(r) = \overline{\mathcal{P}} \setminus X?$

 QQQ

 $\left\{ n:10^{2},\left\{ n\right\} \right\}$, $\left\{ n:10^{2},\left\{ n\right\} \right\}$, $\left\{ n:10^{2},\left\{ n:10$

Homogeneous Tree

Assume \mathbb{T}^m with $m\geq 3$ is the homogeneous tree with boundary

 $\partial \mathbb{T}^m = \{$ all semi-infinite rays from $\rho \}$.

For $\omega, \, \omega' \in \partial \mathbb{T}^m$, let $N(\omega, \, \omega')$ be the length of the common segment of ω and $\omega'.$ Then

$$
d_{e}(\omega, \omega') = e^{-N(\omega, \omega')}
$$

defines a metric on $\partial \mathbb{T}^m$.

Under d_e , the Hausdorff dimension $Hdim \partial \mathbb{T}^m = log(m-1)$.

Literature

Theorem (Liggett '96, Hueter-Lalley '00)

Let $\Lambda(r)$ be the limit set of a symmetric, nearest-neighbor branching random walk with mean offspring r on \mathbb{T}^m and let $h(r) = H \text{dim }\Lambda(r)$. Then

- For $1 \le r \le R$, $h(r)$ is continuous, strictly increasing and nonrandom;
- $h(R) \leq \frac{1}{2}$ Hdim $\partial \mathbb{T}^m$; and the equality holds iff the BRW is simple.
- $h(r)$ has critical exponent $\frac{1}{2}$ at R : there is a constant $C>0$ such that

$$
h(R)-h(r)\sim C\ (R-r)^{\frac{1}{2}},\quad r\uparrow R.
$$

- Branching Brownian motion on hyperbolic spaces: Lalley-Sellke '97, Karpelevich-Pechersky-Suhov '98
- BRW on free products of groups: Candellero-Gilch-Müller '12

 200

(ロ) (*同***)** (ヨ) (ヨ)

Random Walks on Hyperbolic Spaces

Let X be a closed convex subset of the real hyperbolic space \mathbb{H}^d , and Γ a discrete group of isometries of \mathbb{H}^d acting geometrically on $X.$

Assume that

- \bullet μ is a symmetric probability measure on Γ with finite support. Here we say μ is symmetric if $\mu(g^{-1}) = \mu(g)$ for all $g \in \Gamma$.
- \bullet μ is admissible (i.e. the support of μ generates Γ as a semigroup).

The random walk (Z_n) on Γ is the Markov chain with transition probabilities $p(x, y) = \mu \left(x^{-1} y \right)$, starting at the neutral element e .

Fix $o \in X$. We call $(Z_n o)$ the random walk on X.

 QQQ

BRW on Hyperbolic Spaces

Recall that R is the radius of convergence for $G_r(x, y) = \sum_{n=0}^{\infty} r^n p_n(x, y)$.

Consider a BRW on X with mean offspring r and let $\mathcal P$ be its trace. The limit set $\Lambda(r)$ of the BRW is the set of accumulation points of P in ∂X .

Theorem (Sidoravicius-W.-Xiang '20+, Dussaule-W.-Yang '22+) For $1 < r < R$.

• there is $\kappa < +\infty$ such that almost surely for every $\xi \in \Lambda(r)$, as $x \to \xi$ along the geodesic $[0, \xi]$.

$$
\limsup \frac{d(x, Po)}{\log d(o, x)} < \kappa.
$$

$$
\text{Hdim}\,\Lambda(r) = \limsup_{n \to \infty} \frac{1}{n} \log \sum_{g \colon n \le d(o, g o) < n+1} G_r(e, g)
$$

 \bullet

医三角

 Ω

(□) (/ [□])

Gap at R

By the Cauchy-Schwarz inequality,

$$
\sum_{n \leq d(o, g o) < n+1} G_r(e, g) \leq \left[\sum_{n \leq d(o, g o) < n+1} 1 \right]^{\frac{1}{2}} \left[\sum_{n \leq d(o, g o) < n+1} G_r(e, g)^2 \right]^{\frac{1}{2}}.
$$

• By Gouëzel '14,
$$
\sum_{n \le d(o, g o) < n+1} G_r(e, g)^2 \le C.
$$

By Coornaert '93,

$$
\text{Hdim}\,\partial X = \lim_{n \to \infty} \frac{1}{n} \log \sharp \{ g : n \le d(o, \, go) < n+1 \} \, .
$$

Thus

$$
\text{Hdim}\,\Lambda(r) \leq \frac{1}{2}\,\text{Hdim}\,\partial X.
$$

Hdim ∂X

 $\frac{1}{2}$ Hdim ∂X

Þ \mathbf{h}

4 0 8

 $1 \qquad R$

÷,

 299

Biased Random Walks

For $\lambda > 0$, the λ -biased random walk on the homogeneous tree \mathbb{T}^{d+1} with root o is the Markov chain with transition probabilities

where x^- is the parent of x . Then the radius of convergence is

$$
R = \begin{cases} \frac{d+\lambda}{2\sqrt{d\lambda}}, & \text{if } 0 < \lambda < d, \\ 1, & \text{if } \lambda \ge d. \end{cases}
$$

We have for $0 < \lambda < d$.

$$
h(r) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{d(o, x) = n} G_r(o, x) = \log \left[\frac{d + \lambda - \sqrt{(d + \lambda)^2 - 4d\lambda r^2}}{2\lambda r} \right].
$$

Longmin Wang
BRW on Hyperbolic Spaces
vangum² unglm²manaka i.edu cn
unglmahka i.edu cn
10/14

Biased BRW

Consider the λ -biased BRW on \mathbb{T}^{d+1} with mean offspring r.

If $d^{-1} < \lambda < d$, then for $1 < r \leq R$, Hdim $\Lambda(r) = h(r)$. In particular,

$$
\text{Hdim}\,\Lambda(R) = \frac{1}{2}\left[\log d - \log \lambda\right] < \log d.
$$

- If $\lambda = d^{-1}$, then for $1 < r \le R$, Hdim $\Lambda(r) = h(r)$. In particular, Hdim $\Lambda(R)$ = log d, and Hdim $\Lambda(r)$ is continuous for $r > 0$.
- If $0 < \lambda < d^{-1}$, then with $R_0 = \frac{d+\lambda}{d\lambda+1}$,

$$
\text{Hdim}\,\Lambda(r) = \begin{cases} h(r), & \text{if } 1 < r < R_0, \\ \log d, & \text{if } R_0 \le r \le R. \end{cases}
$$

In particular, Hdim $\Lambda(r)$ is continuous for $r > 0$.

Random Walks on Trees

Let T be a locally finite, infinite tree with root o . For $x \in T$, the cone C_{x} is the subtree rooted at x Denote

$$
C = \{ \text{isomorphism classes of } C_x : x \in T, x \neq o \}.
$$

For $x \in T \setminus \{o\}$, define $\tau(x) \in C$ to be the type of the cone C_x . For *i*, $i \in \mathcal{C}$, we assign $d(i, j)$ directed edges from i to j, where $d(i, j)$ is the number of type-*i* children of x with $\tau(x) = i$.

We say T has finitely many cone types, if C is irreducible and finite.

Consider a random walk on T with transition probabilities $p(x, y)$. Assume

$$
\tau(x) = i, \ \tau(y) = j \text{ with } y \in C_x \implies p(x, y) = p(i, j),
$$

where $p(i, j)$ is a matrix on C. Then

$$
p(x, x^{-}) = 1 - \sum_{j} d(i, j)p(i, j).
$$

See Lyons '90, Takacs '97, Nagnibeda-Woess '0[2.](#page-10-0) 000 ASD ASD ASD ASD ASD

BRW on Trees

Recall that

$$
h(r) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{d(o, x) = n} G_r(o, x).
$$

Define

$$
R_0 = \sup \left\{ r > 0 : G_r(o, x) \le 1 \quad \text{for all large } x \right\}.
$$

Theorem (Lai-W. in progress)

Let $\Lambda(r)$ be the limit set of the BRW with mean offspring r on trees with finitely many cone types. Then for $1 < r \le R_0$,

Hdim $\Lambda(r) = h(r)$.

Remark If the group $AUT(T, P)$ acting on (T, P) transitively, then $R_0 = R$.

 QQ

イロト イ押ト イヨト イヨト

Problems

- **1** On trees with finitely many cone types, find Hdim $\Lambda(r)$ for $R_0 < r \le R$.
- **2** On hyperbolic spaces, find conditions for $\text{Hdim}\,\Lambda(R) = \frac{1}{2}\,\text{Hdim}\,\partial X$.
	- Fundamental inequality: $h \leq l v$ (c.f. Guivarc'h '79) Blachère-Haïssinsky-Mathieu '11, Gouëzel-Mathéus-Maucourant '18, Dussaule-Gekhtman '20: For random walks on (relatively) hyperbolic groups Γ , $h = l v$ only if Γ is virtually free.

$$
\bullet \quad \sum_{n \leq d(o, g o) < n+1} G_R(e, g) \times \left[\sum_{n \leq d(o, g o) < n+1} 1 \right]^{\frac{1}{2}} \left[\sum_{n \leq d(o, g o) < n+1} G_R(e, g)^2 \right]^{\frac{1}{2}}.
$$

³ Percolation, Contact processes, ...

THANK YOU FOR YOUR ATTENTION!

 QQQ

イロト イ押ト イヨト イヨト